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Abstract

Miniaturization, or the evolution of extremely small adult body size, is a
widespread phenomenon in animals. It has important consequences for both
organismal biology and phyletic diversification above the species level. The
miniaturized phenotype is a complex combination of ancestral and derived
traits, including reduction and structural simplification, increased variability,
and morphological novelty. Many features likely represent secondary conse-
quences of size decrease, which may be the result of selection primarily for
small body size or some related attribute such as life history characteristics.
In some cases, miniaturization has resulted in novel bauplans associated with
the origin of higher taxa. Evaluation of causes and consequences of minia-
turization should consider obvious features of physical size as well as less
obvious, but biologically important, features such as genome and cell size.

INTRODUCTION

Body size is among the most important determinants of organismal function
and ecological role (58, 97). Biologists have expended considerable effort in
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documenting patterns of size distribution and evolutionary size change among
organisms (76, 141), as well as in analyzing the consequences of size and
size change for various biological attributes (4a, 9, 78, 125). One especially
significant trend in the evolution of body size is miniaturization, or extreme
phylogenetic size decrease. Yet. with the exception of a few early studies
(e.g. 107, 108), the broad significance of miniaturization for organismal
biology and evolution, including its high frequency among major groups of
animals, has been largely unappreciated. In this review we summarize the
phenomenon of miniaturization in animals, focusing on both the mechanisms
and morphological consequences of size decrease and the implications of these
features for various aspects of organismal biology and phylogeny. We hope
to promote recognition of the prominent role played by miniaturization in
evolutionary processes in both vertebrates and invertebrates, and especially
phyletic diversification above the species level.

THE PHENOMENON OF MINIATURIZATION

Whar is Miniaturization?

Miniaturization is the evolution of extremely small body size within a lineage.
It is a phylogenetic statement, implying that the group under consideration
evolved from a larger ancestor. Yet, miniaturization involves not only small
body size per se, but also the consequent and often dramatic effects of extreme
size reduction on anatomy, physiology, ecology. life history, and behavior—
the costs of size decrease, and its compensations. We consider the “critical
size” for miniaturization to be that at which important physiological or
ecological functions such as feeding, locomotion or reproductive biology are
affected. necessitating a major change in the way an organism deals with its
ancestral adaptive zone. Some instances of miniaturization may represent a
minimum body size below which further size decrease is not permitted because
of the design limitations of a given bauplan.

Biological parameters vary widely with respect to how they scale with body
size, as do physiological systems with respect to the range of body sizes over
which they function efficiently (125). Hence, it should rarely be possible to
identify a single critical size for any group of closely related organisms, let
alone for a higher taxonomic group such as vertebrates. There also 1s no strict
criterion for distinguishing miniaturization from other, less severe instances
of size reduction, which lie along the same body-size continuum. The
distinction between miniaturized and nonminiaturized taxa may even be
somewhat arbitrary (31, 65). In freshwater teleostean fishes, a standard length
{snout to base of caudal fin) of 25-26 mm has been used as the maximum
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size for miniature species (164); this represents one-fourth to one-fifth the
average size of living teleosts (87). Other complicating factors include cell
size and number in relation to body and organ size (121, 122; see discussion
below), and physiology. For example. the endothermic metabolism of birds
and mammals dictates a larger minimum adult body size compared to
ectotherms (9, 46, 125). Consequently, while many instances of evolutionary
size decrease are known, especially for mammals (66, 104, 123. 131, 135.
153a), miniaturization is more common, and certainly more extreme, in fishes,
amphibians, and reptiles. In these, adults may be as small as 810 mm standard
length and weigh as little as 2-8 mg (29, 169).

How Common is Miniaturization?

Examples of miniaturization are numerous and taxonomically diverse (73,
107, 108). They include a variety of living and extinct invertebrates. such as
foraminiferans (69), nemertines (55), annelids (110, 165). brachiopods (60),
molluscs (59, 96, 101, 124, 127, 138, 143, 146, 149), arachnids (100, 105.
166, 167), crustaceans (47, 91, 128), insects (7, 18, 23, 56), echinoderms
(84, 85, 140, 152), and ascidians (83). Vertebrate examples include a large
number of teleost fishes (5, 81, 87, 88, 93-95, 115-118. 139, 145. 151.
161-164, 168, 169), amphibians (20, 29, 32, 33, 36, 37, 42-45, 137, 148.
159, 171), reptiles (14, 27, 35, 102, 111-113), birds (106, 170). and mammals
(25, 28, 38. 86, 134). Indeed. it is difficult to propose any major metazoan
taxon that doesn't offer an example.

Miniaturization is especially common in certain environments. For exam-
ple, “Gigantism, together with bizarreness, and dwarfing are two striking
features of the Antarctic and deep-sea biotas™ (65, p. 336). In the Antarctic,
61% of bivalve molluscs are sexually mature at less than 10 mni: maximum
adult size of some minute species is 1.1 mm (124). Entire communities of
reduced or even miniaturized species include the interstitial or meiofauna (50,
142) and many island faunas (72, 102, 123). (Islands also provide classic
examples of gigantism; 138a).

Quantifying the frequency of miniaturization, however, is problematic; one
of the main reasons is the lack of a simple criterion for recognizing it in
individual taxa. Nevertheless, individual estimates are informative, and
surprisingly high. Using the size criterion discussed above, at least 85 species
of South American freshwater fishes are regarded as miniature, representing
5 orders, 11 families, and 40 genera (164).

Even more difficult is quantifying the number of times miniaturization has
evolved. Because of the homoplasy that frequently accompanies size decrease
in closely related groups, miniaturized taxa may be regarded incorrectly as
monophyletic, representing a single instance of reduction. This is exemplified
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by pygmy squirrels (“Nannosciurinae™, 86), mites (Acari; 153), and
“archiannelid” worms (165a). Basing any tabulation of the number of times
miniaturized body size has evolved on its distribution among major taxa thus
is likely to underestimate the actual number. When phylogenetic hypotheses
are robust, the frequency of evolution of miniaturization is surprisingly high.
A critical size of 30 mm standard length yields at least 10 genera of
plethodontid salamanders in which miniaturization has evolved independently,
involving a total of at least 20 species (157).

Developmental Basis of Body Size Decrease

The developmental mechanisms that mediate evolutionary change in body
size have been addressed in a number of recent studies (46, 75, 77, 79, 132,
133). Virtually all discuss developmental mechanisms in terms of hetero-
chrony, and they take as their point of departure either the “clock model™ of
Gould (30) or the subsequent, more formal scheme of Alberch et al (2). Both
models attempt to characterize the ontogenetic and phylogenetic relations
among age. body size, and one or more aspects of “shape” or developmental
stage, and both try to evaluate the possible processes and results of
heterochronic change.

Several important generalizations regarding miniaturization emerge from
these studies. First, adult body size decrease may result from various
perturbations to the ancestral ontogeny; each case requires its own heterochro-
nic analysis. Precocious cessation of growth (i.e. ancestral patterns of growth
in mass and allometry unchanged, but duration of growth truncated, termed
progenesis or time hypomorphosis; 132, 133) and reduction in growth rate
(ancestral rate of growth in mass reduced, but pattern of allometry and duration
of growth unchanged, termed rate hypomorphosis) are perhaps the most
straightforward processes for achieving body size decrease, but other pertur-
bations, e.g. extension of the growth period, could also be associated with
size decrease (46).

Secondly, the consequences of size decrease for adult morphology may be
highly variable, depending on the kind of ontogenetic scaling and develop-
mental processes involved. Identical changes may result from different
perturbations. Thirdly, the relevant ontogenetic data for evaluating possible
mechanisms of size decrease (including size- and age-specific growth rates,
age at sexual maturity, and developmental sequences for various structures)
are rarely known, especially for fossil organisms (75, 77).

Finally, and following from the above considerations, it may be impossible
to identify reliably and unambiguously the specific developmental perturbation
underlying many instances of miniaturization. Adult morphology may be a
poor guide to these processes; i.e. it is risky to infer process from pattern.
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CONSEQUENCES OF MINIATURE BODY SIZE FOR THE
ORGANISM

The consequences of miniaturization for organismal biology are ubiguitous
and profound; virtually every attribute, from physiology (78, 125, 154), to
behavior (18), to ecology (50), may be affected. Here we emphasize the
morphological consequences of size decrease, which are among the most
conspicuous and frequently documented features; they also mediate, or even
dictate, many of the changes observed in other aspects of the phenotype. We
restrict our treatment to three classes of effects—reduction and structural
simplification, morphological novelty, and increased morphological variabil-
ity—which are most relevant to our subsequent discussion of the evolutionary
significance of miniaturization.

Reduction and Structural Simplification

The most common effect of miniaturization on morphology is reduction and
structural simplification. This is manifest in many ways, ranging from general
underdevelopment to the loss of individual organs or even entire organ systems
(19, 30, 50, 107, 108). Among vertebrates, examples from the skeleton are
perhaps the most numerous (46). In salamanders of the genus Thorius, the
adult skull lacks several bones found in related genera of larger animals (44).
Many of the bones remaining are so poorly developed that they fail to articulate
with any other and leave many important nonskeletal components, such as
the brain, largely unprotected (43). Many species are virtually toothless. Such
examples may indicate an especial lability or size-dependence of skeletal
tissues, but equally dramatic examples of reduction and simplification
involving other components, e.g. the brain and sense organs, have also been
described (64, 121, 122, 145).

One interesting and conspicuous difference between vertebrates and many
invertebrate groups involves the tendency for wholesale loss of major organ
Systems as a consequence of, if not a prerequisite for, extreme body size
reduction. This remarkably common and seemingly facile option in inverte-
brates may involve one (usually males) or both sexes (108, 110, 142, 143),
Such alterations of the basic bauplan typically are associated with dramatic
changes to the organism’s way of life, including ecology, life history, and
behavior (73); they frequently involve the evolution of parasitism (52, 149),
Deepsea ceratioid anglerfishes (99) provide a comparable example from
vertebrates, which otherwise evince a bias towards miniaturization without
loss of major functions.

The reduced and simplified adult morphology that characterizes many
miniaturized taxa often bears a strong resemblance to subadult. or even
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embryonic, stages of larger close relatives. This resemblance typically is the
primary evidence used to define the morphology of many miniaturized species
as paedomorphic, and as having evolved via precocious truncation of the
ancestral developmental program (30). However, the “juvenile” adult mor-
phology of many miniaturized forms is rarely a perfect replicate of any stage
of the presumed ancestral ontogeny (38, 59. 132, 165b). Instead, it often
constitutes variable, and sometimes opposite, effects of size reduction on
different tissues within the same organism. In amphibians, skeletal reduction
(assessed by the size, shape, or configuration of individual cartilages or bones)
is often correlated with excessive development (e.g. hyperossification) of the
same tissues (42, 46, 148). Moreover, cases are known from both vertebrates
(95) and invertebrates (73) in which reduced and simplified adult morphology
results from resorption of structures that are partly of even fully formed at
earlier ontogeneltic stages.

Morphological Novelty

There is a consistent association between extreme phylogenetic body size
decrease and morphological novelty. This association seemingly cuts across
all major taxa, including many marine forms (10, 59, 73, 90, 142), insects
(56), and vertebrates (42, 43,45, 88, 113, 117, 118, 162). Examples comprise
a series of remarkable and sometimes bizarre structures, ranging from the
priaprium, a bilaterally asymmetric, subcephalic copulatory organ derived
from the pelvic fins in the minute phallostethid fishes of southeast Asia (94,
95, 115), to the “ciliated” wing characteristic of tiny adult featherwing beetles
(Trichopterygidae), which are as short as 0.25 mm (23, 56).

The evolution of some novel features is readily tied to size decrease. In
vertebrates. for example, there is a negative allometric relationship between
the size of the innet ear and head and body size. When this conservative
relationship is extrapolated to extremely small heads, as in several lineages
of miniaturized amphibians and reptiles, the now prominent inner ear effects
gross and novel rearrangement of the adjacent skull, and especially the jaw
suspension, often with important functional consequences (14, 43, 111, 113).

In other instances of miniaturization the link between size decrease and
novelty is not as easily defined. Its existence, however, is reinforced by the
parallel or convergent evolution of similar, if not identical, modifications in
disparate lineages that have evolved small size. For example, the ciliated wing
morphology of most featherwing beetles. which is an aerodynamically
functional design at the tiny body sizes involved (17, 78), has evolved
independently “in the most minute members of unrelated groups™ (23, p. 14).
These include both moths (23, 78) and wasps, such as the “fairy flies”
(Mymaridae), which, at as little as 0.21 mm long, are the smallest known
insects (56).
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A causal explanation for the striking correlation between miniaturization
and novelty may lie in part in the effect of size reduction on the morphogenetic
mechanisms of pattern formation, many of which are size dependent (45). A
simple decrease in the size of an embryonic organ primordium, for example,
can effect dramatic change in adult morphology (1); moreover, such changes
do not require any change in the underlying developmental mechanism.

Novelty is often superimposed on reduction and simplification (4244, 46,
85, 121, 156). Among ammonites, miniature paedomorphic species may be
nearly indistinguishable from the juvenile stages of outgroups, but more
typically they display novel or unique features at maturity that seem unrelated
to paedomorphosis (59). Other species display traits thought to result from a
termination of growth without a cessation of development. This reinforces the
generalization that the evolution of small size, even when it involves
paedomorphosis, is more than simple truncation of the ancestral ontogeny.
Instead, it is the outcome of a complex interplay of size, developmental
mechanisms, functional demand, and historical contingency (60, 133-135).

Increased Morphological Variability

There are few examples of a third consequence of miniaturization—increased
morphological variability within species (44, 46, 72). When present, the
variation Is related to reduction or morphological novelty. For example, it
frequently involves late-forming structures, whose development is preco-
ciously truncated as part of an overall pattern of reduction via paedomorphosis.
This results in extensive intrapopulational, and sometimes even intraindividual
(right-left), variation in the presence/absence of a given element, e.g. the
septomaxillary bone in salamanders of the genus Thorius (44). Other instances
of increased variability are not obviously related to developmental truncation,
but instead involve novel features that have themselves arisen during
miniaturization (42, 45).

EVOLUTIONARY SIGNIFICANCE OF
MINIATURIZATION

Phylogenetic Perspectives

Some clades are more successful than others in terms of the number and
diversity of component taxa and longevity. Founders of successful clades are
more often small than large, and size increase within lineages (Cope’s Rule)
is more common than size decrease (41, 58, 63, 76, 89, 141). One reason
that successful clades arise at small size may be simply that most available
ancestors are small (21, 141). Conversely, when morphological novelty
commonly associated with miniaturization involves fundamental changes to
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the bauplan, entirely new patterns of organization may result (see below).
Indeed, miniaturization has been postulated as a key feature in the evolution
of many major taxa, including the carliest reptiles (11, 12), snakes (1 13, 114),
lizards (12, 13), lissamphibians (3, 4, 15, 82), bivalves (127), and several
“mesozoan” phyla (8). There is a temporal asymmetry in the pattern of phyletic
size change in the fossil record; body size increase within clades is charac-
teristically gradual, but size decrease may be abrupt (39-41) and often
attributed to paedomorphosis (39, 53). Small size of the members of basal
groups may account for many gaps in the fossil record. Ancestors of modern
amphibians (Lissamphibia), for example, may have been among the smallest
of Paleozoic amphibians (4. 14. 15).

Morphological Perspectives

Miniaturization has at least three general consequences for morphological
evolution. In extreme cases it can lead to changes in bauplan. Even when the
bauplan is maintained, miniaturization can promote the evolution of novel
developmental and morphological relationships. Finally, it often results in
morphological homoplasy, which can complicate phylogenetic analyses and
obscure the evolutionary impact of size decrease.

Novelty associated with miniaturization may be responsible for distinctive-
ness. even bauplan reorganization, in newly established clades (73, 109, 142).
The interstitial fauna has attracted particular attention; many taxa, such as the
phyla Gnathostomulida and Loricifera (both comprised of species of very
small size), may have been founded by miniaturized and possibly paedomor-
phic species (68, 73). A minute (2-4 mm long) worm discovered recently,
(Jennaria pulchra), is thought to be an annelid, but it lacks circular muscle
and a coelom; it may illustrate how acoelomates arose from coclomates during
the pre-Cambrian radiation of the Bilateria (110). The pseudocoelomate
condition characteristic of many other phyla also may have arisen by
paedomorphosis from an ancestral coelomate bauplan (8, 109a). Minute poly-
chaete worms, for example, have lost intersegmental septa, and the coelomic
fluid is continuous among segments; in many species the coelomic lining also
has been lost, producing a homoplastic pseudocoelomate condition (109a).
The four enigmatic “mesozoan” phyla (Placozoa, Monoblastozoa, Rhombo-
zoa, and Orthonectida) have a generally simple organization but also display
odd, specialized features that may be consequences of secondary simplifica-
tion (8. 34a. 141a, 154a). Finally, basic body organization of the smallest
known species of monoplacophoran mollusc (genus Micropilina; maximum
length 0.92 mm) is so poorly defined as to lead one author to question whether
the group even has a meaningful bauplan (48a). In all these examples, novel
bauplans may have evolved as a consequence of size decrease.

Miniaturization may promote novelty when tissues and organs reach limits




MINIATURIZATION AND EVOLUTION 509

imposed by the physical world (17), or by exploiting the potential of underlying
developmental processes (31). Its full evolutionary potential is realized when
a novel feature leads to additional novelty during subsequent phyletic
diversification. Seilacher (127) postulates “morphogenetic shunting™ in the
evolution of soft-bodied oysters, in which miniaturization initially produces
fundamental changes in the mechanisms of shell morphogenesis. Descendant
lineages, including small and large forms, subsequently display a wide array
of novel shell types that are manifestations of the modified morphogenetic
system. These novel configurations, in turn, facilitate ecological diversifica-
tion. Additional invertebrate examples include some bizarre features of
miniaturized phyla, e.g. the complex head of loriciferans (49). In salamanders,
an extreme case of miniaturization resulted in the loss of a biomechanically
important cartilage and erosion of vertebrae, but subsequent evolution
produced new and fully functional organizations (67, 155, 156, 158).

Homoplasy (phylogenetic convergence. parallelism, and reversal) often
accompanies miniaturization (25, 114). Mites (Acari), among the smallest of
complex terrestrial metazoans, may have been derived independently from
several ancestral arachnid clades (153), which evolved “convergently to
capitalize on miniaturization and the acarine Bauplan™ (8, p. 503). At lower
taxonomic levels, homoplasy is rampant in the appendicular and cranial
skeleton of miniaturized frogs and salamanders (20, 45, 46, 148, 156). A
striking example is the repeated reduction and loss of the first digit of the
hind limb in frogs and the fifth digit in salamanders (1, 29, 37).

A special kind of homoplasy related to miniaturization is compensatory
convergence, which involves the evolution of similar features that compensate
for detrimental effects of size decrease (159). Within a morphologically
diverse taxon, repeated instances of miniaturization result in convergent
specializations because the same developmental rules are in effect. Examples
include cranial organization in pygmy squirrels (86), hyperossification in
amphibians (46), and reinforcement of the body wall by the development of
a spiracular skeleton in many meiofaunal taxa (142, 143),

Ecological and Behavioral Perspectives
There are many ecological correlates of miniaturization, especially involving
life history. In general, extreme body size decrease is associated with a
reduction in fecundity and an increase in egg size (32, 126, 136). This trend
1s taken to its logical extreme in some species of miniaturized animals in
which females produce only a single large egg per clutch (23). The possible
role of life history features in the evolution of miniaturization is discussed
below.

Behavioral evolution, accompanied by homoplasy, often accompanies
miniaturization; examples include behavioral simplification in copepods
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(128), and madifications of mating behavior in fishes (81, 93, 94, 115, 162),
salamanders (103), frogs (22, 32, 34), and mammals (61). Behavioral
complexity in ants is related to the 3/2 power of brain volume, which is
allometrically related to head width (18). Because in ants head width also is
a good measure of body size. miniaturization of these insects leads to
behavioral simplification.

PROBLEMS IN THE STUDY AND ANALYSIS OF
MINIATURIZATION

Phylogenetic Issues

Comparative biology must proceed within a rigorous phylogenetic framework
(6, 48), and tools for phylogenetic reconstruction and analysis are readily
available (70). Heterochrony and homoplasy both figure prominently in
discussions of miniaturization, yet explicit phylogenetic hypotheses are
necessary before either class of phenomena may be invoked or analyzed
effectively (24, 48, 156, 158, 160). Heterochrony and homoplasy interconnect
in the case of pacdomorphic parallelism, in which related clades in essence
back down (in a phylogenetic sense) inherited and thus largely common
ontogenetic trajectories. Particularly confounding are the many instances of
reversal in which plesiomorphic states are restored; when organismal-wide,
or global, paedomorphosis is involved. there may be profound difficulty in
determining whether taxa are basal or highly derived (50, 85, 163, 165b).

Another challenge to phylogenetic analysis is posed when the miniaturized,
adult morphology is so specialized (as a result of reduction, simplification,
compensation, novelty, etc) as to obscure affinities with any other known
taxon; many such groups are taxonomic enigmas (36, 44, 57, 84, 109, 112,
117. 161). Characters derived from DNA sequences and other nonmorphologi-
cal features are often required to resolve these formidable problems.

Factors Promoting the Evolution of Miniaturization

As evolutionary biologists, we seck causes for miniaturization in environmen-
tal factors that favor small body size. In ecology and evolutionary biology,
however, causality is difficult to ascertain (98). The adult morphology of
many miniaturized species is so poorly developed, including reduction,
structural simplification, and increased variability, that it is hard to envision
these features as the main target of selection (4, 26, 44). Instead, they may
represent nonadaptive (but not necessarily maladaptive) by-products of size
decrease that is promoted by selection for some other attribute (38, 74). Many
specialized niches or habitats demand tiny body sizes, such as the spaces
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between sediment particles (the meiofauna; 50, 142). and life as external
parasites or commensals on parts of already small organisms (e. g. mites that
live on the wing bases of insects; 73), or as commensals, inquilines, or internal
parasites (e.g. pearl fishes: 147, 150). In many other instances of miniatur-
ization, the factors promoting size decrease are more elusive, Because body
size is a critical variable in most studies of population biology and community
ecology (97). adaptive explanations related to life history evolution need to
be explored (35, 69, 133).

It is possible to integrate life history theory, selection theory, and ideas of
heterochrony in regard to miniaturized species. Early sexual maturation, which
may be favored in unpredictable or unstable environments. may come at the
expense of subsequent growth and differentiation and result in progenesis
(time hypomorphosis) (30, 80). Indeed, claims of progenesis abound in the
literature on miniaturization (e.g. 165b). Yet, as discussed above. other
processes that do not involve precocious reproduction, such as rate
hypomorphosis, may also result in small size and paedomorphic morphology.
These processes are rarely considered (132, 133). A careful phylogenetic
analysis is required for each clade to determine if age at first reproduction is
advanced in the miniaturized lineage. Moreover, subsequent evolution may
extend the time to first reproduction, obscuring the proximal evolutionary
process originally responsible for size decrease.

An alternative model for the evolution of miniaturization based on selection
primarily for life history atributes comes from Matsuda (73). It involves both
environmentally induced phenotypic plasticity and subsequent genetic assim-
ilation. According to this model, environmentally induced increase in egg
size leads to the incorporation of larval or other juvenile stages into the period
of intraoval development. In extreme cases. this condensation of the ancestral
ontogeny results in tiny hatchlings that are structurally adult, thereby providing
an easy transition to miniaturization. Such “direct development” is character-
1stic of many taxa of miniaturized animals within lineages that primitively
display a complex life history (51. 73).

The Meaning and Measurement of Size

Biologists typically measure organisms against a physical standard and express
size in related units—inches, meters, etc. These estimates of “physical size”
are very effective for describing many biological phenomena, such as the
allometric scaling of morphological and physiological variables relative to
body size during both ontogeny and phylogeny (125). Such an approach
implicitly assumes that a common scaling principle can be used across a wide
range of organisms (e.g. 97), except in extreme cases where constraints of
the physical world intervene (e.g. the effects of very low Reynolds numbers:
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17). Other basic features of organismal design, however, may also qualify
this assumption. For example, metazoans are made up of modular units—
cells—which, with the exception of some types such as neurons, have a
predictable and typical size within a given organism and tissue (4a). However,
because of the strong, positive correlation between cell size and genome size,
and because genome size may vary widely among taxa, cell size may differ
significantly between even closely related species (92, 144). There is, in turn,
a complicated relationship between genome/cell size and metabolic and
developmental rates (16, 130). As a result. species that are the same physical
size but have different genome and cell sizes likely also differ in ways that
significantly affect morphogenesis, growth, and adult morphology. Analysis
of organismal size and size change thus becomes a consideration not simply
of physical size, but also of a more elusive concept—biological size.

This has direct bearing on the study of miniaturization. In some groups,
miniaturization may have been achieved by cell size decrease (65). In others,
extensive genome and cell size variation complicates tremendously even basic
comparisons of body size among taxa. In two amphibian groups well known
to us, Anura and Caudata, genome size varies by an order of magnitude among
species (54, 62, 71, 129, 130). The variation is especially large in salaman-
ders, in which genome size ranges approximately from 14 to 100 pg DNA
per haploid genome (vs 1-19 pg DNA in frogs). For these taxa physical size
is misleading, although for most other tetrapods, which have genomes smaller
than 5 pg DNA/haploid nucleus and relatively little variation (92), it is
appropriate. Because the tiny salamanders of the plethodontid genus Thorius
have a large genome (ca. 25 pg DNA/haploid nucleus: 129, 130) and, hence,
large cells, they are even smaller with respect to developmental mechanics
and structuralist principles of design and self-organization; their morphology
is among the most profoundly specialized in vertebrates (42, 44, 121, 156).

Even physically large organisms can be “biologically small” if their
genomes are sufficiently large. Two of the three living genera of lungfishes
(Dipnoi), which have by far the largest genomes in vertebrates (92), show
evidence of secondary simplification of the nervous system as well as other
traits that have been interpreted as paedomorphic (120). The plethodontid
salamander genus Hydromantes has the largest genome of any terrestrial
salamander (129, 130). Although all species are moderately large (head and
trunk length exceeds 60 mm), they have among the most simplified brains of
any vertebrates (119, 121). Hydromantes belongs to the speciose tribe
Bolitoglossini, which itself is characterized by a high degree of secondary
simplification, loss of ancestral structures, and novel organization and
morphology (158). These features have been attributed mostly to the large
genomes characteristic of these salamanders, which resuilt in a biological, but
largely nonphysical miniaturization (157).
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SUMMARY AND CONCLUSIONS

Miniaturization is a common phylogenetic trend that has immediate and
far-reaching consequences for organismal and evolutionary biology. The
miniaturized phenotype is a complex combination of ancestral and derived
traits; morphological correlates include reduction and structural simplification,
increased variability, and novel structural configurations. Many of these
features likely represent secondary consequences of precocious truncation of
ancestral ontogenetic trajectories. Such truncation may result from selection
primarily for small body size or some related attribute (c.g. life history
characteristics), Other features are not readily explained by developmental
truncation, but instead likely represent direct results of size decrease, i.c.
scaling cffects. Effects on adult morphology may obscure phylogenetic
relations to other, nonminiaturized taxa; this taxonomic confusion is often
compounded by homoplasy and character reversal. In extreme instances,
miniaturization has resulted in novel bauplans associated with the origin of
higher taxa. Evaluation of the causes and consequences of miniaturization
should play an integral role in the search for explanation of the biology of
small animals, which should consider both obvious (e.g. physical size) and
nonobvious (e.g. genome and cell size) features,
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