
V
O

L
U

M
E

 2
0

, N
U

M
B

E
R

 3
-

4
 •

 M
A

Y
/

A
U

G
U

S
T

 2
0

1
8

P
A

G
E

S
 8

9
–

1
2

8

 Volume 20, Number 3-4  |  May/August  2018

EVOLUTION
DEVELOPMENT

EDE_20(3-4)_Cover4_1 .indd   1EDE_20(3-4)_Cover4_1 .indd   1 05/07/18   10:58 am05/07/18   10:58 am



DOI: 10.1111/ede.12250

RESEARCH

Early limb patterning in the direct-developing salamander
Plethodon cinereus revealed by sox9 and col2a1

Ryan R. Kerney1 | James Hanken2 | David C. Blackburn3

1Department of Biology, Gettysburg
College, Gettysburg, Pennsylvania

2Museum of Comparative Zoology,
Harvard University, Cambridge,
Massachusetts

3 Florida Museum of Natural History,
University of Florida, Gainesville, Florida

Correspondence
Ryan R. Kerney, Department of Biology,
Gettysburg College, 300 NWashington St,
Gettysburg, PA 17325.
Email: rkerney@gettysburg.edu

Direct-developing amphibians form limbs during early embryonic stages, as opposed to

the later, often postembryonic limb formation of metamorphosing species. Limb

patterning is dramatically altered in direct-developing frogs, but little attention has been

given to direct-developing salamanders.We use expression patterns of two genes, sox9

and col2a1, to assess skeletal patterning during embryonic limb development in the

direct-developing salamander Plethodon cinereus. Limb patterning in P. cinereus

partially resembles that described in other urodele species, with early formation of digit

II and a generally anterior-to-posterior formation of preaxial digits. Unlike other

salamanders described to date, differentiation of preaxial zeugopodial cartilages

(radius/tibia) is not accelerated in relation to thepostaxial cartilages, and there is noearly

differentiation of autopodial elements in relation to more proximal cartilages. Instead,

digit II forms in continuitywith the ulnar/fibular arch. This amniote-like connectivity to

the first digit that forms may be a consequence of the embryonic formation of limbs in

this direct-developing species. Additionally, and contrary to recent models of

amphibian digit identity, there is no evidence of vestigial digits. This is the first

account of gene expression in a plethodontid salamander and only the second published

account of embryonic limb patterning in a direct-developing salamander species.

1 | INTRODUCTION

Salamander limb development is unique among extant
tetrapods. The limb buds lack a morphologically distinct
apical ectodermal ridge (Tank, Carlson, & Connelly, 1977;
Torok, Gardiner, Izpisúa Belmonte, & Bryant, 1999), rarely
assume a distinct paddle shape during digit formation
(Franssen, Marks, Wake, & Shubin, 2005; Holmgren, 1933;
Shubin & Alberch, 1986) and express the novel three-
finger-protein-family regulator prod1, which is required for
digit development and regeneration (Kumar, Gates,
Czarkwiani, & Brockes, 2015). The novelty of salamander
limb development is most prominent in the sequence of
skeletal patterning. All other extant tetrapods have

postaxial patterning, in which limb homologs of digit IV
form first in both the manus and pes followed by a general
posterior-to-anterior order of digit formation (Hinchliffe &
Griffiths, 1982; Hinchliffe & Johnson, 1980; Holmgren,
1933; Shubin & Alberch, 1986). In salamanders, however,
formation of the digits follows a preaxial pattern of
development (reviewed in Shubin & Wake, 2003; Fröbisch,
2008). Digit II forms first, often in synchrony with digit I
and the basale commune (a derived mesopodial element),
followed by a general anterior-to-posterior order of digit
formation. In most salamanders, this coincides with earlier
differentiation of the preaxial radius/tibia in comparison to
the postaxial ulna/fibula. The “preaxial polarity” of
salamanders is also found in fossil temnospondyls and
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could possibly be the ancestral condition for tetrapods
(Fröbisch, Bickelmann, Olori, & Witzmann, 2015).

Salamanders also are unique in forming distal mesopodial
and autopodial elements without a continuous condensation
linking them to more proximal cartilages. In particular, the
basale commune and metacarpals I and II tend to form before
more proximal cartilages of the mesopodium and zeugopod
(Blanco &Alberch, 1992; Fröbisch, 2008; Shubin &Alberch,
1986; Shubin &Wake, 2003; Vorobyeva & Hinchliffe, 1996;
Wake & Shubin, 1998). This constitutes an exception to the
general proximal-to-distal order of skeletal differentiation
found in all non-salamander tetrapod limbs (Blanco &
Alberch, 1992; Shubin & Alberch, 1986).

Within salamanders, unique patterns of limb development
are associatedwith different life history strategies and taxonomic
groups (Blanco&Alberch, 1992; Franssen et al., 2005;Wake&
Shubin, 1998; Shubin & Wake, 2003). Whereas most research
into salamander limb development has focused on the neotenic
axolotl (Ambystoma mexicanum; Guimond et al., 2010) and
metamorphosing newts (Cynops and Notophthalmus; Kumar
et al., 2015), terrestrial direct development is the most common
life historymode among livingurodeles (Wake&Hanken, 1998;
Smirnov, 2008). Terrestrial direct development in amphibians is
associated with the “pre-displacement” of limb formation into
embryonic stages (Franssen et al., 2005;Gross,Kerney,Hanken,
& Tabin, 2011; Kerney & Hanken, 2008; Richardson et al.,
1998). Limbs begin to form early during embryogenesis,
coincident with neural tube closure, and are largely complete
prior to hatching (Collazo&Marks, 1989; Kerney, 2011;Marks
& Collazo, 1998; Richardson et al., 1998). This earlier onset of
limb formation is more similar to that found in amniotes than in
metamorphosing amphibians (Bininda-Emonds et al., 2007;
Galis, Wagner, & Jockusch, 2003; Young & Tabin, 2016).

There are only two published accounts of limb development
in direct-developing salamanders (Franssen et al., 2005; Shubin
&Wake, 1991). All direct-developing salamanders belong to the
Plethodontidae, which is the most speciose family of salaman-
ders.Moreover, the fact thatmost plethodontids exhibit terrestrial
direct development means that more than half of all living
salamander species have this developmental mode (Hanken,
2003). Similar to amniotes, digits in direct-developing Desmog-
nathus aeneus form within a limb “paddle” instead of extending
from a conical limb bud “palette” as occurs in most
metamorphosing species (Franssen et al., 2005; Nye, Cameron,
Chernoff, & Stocum, 2003). A paddle, however, is also seen
during limb development in the free-living larva of the stream-
dwelling D. quadramaculatus (Marks, 1995), indicating that a
paddle is not strictly associated with loss of the larval stage.
Direct developers also exhibit other features of limbdevelopment
that are regarded as “amniote-like” (Shubin & Wake, 1991;
Wake & Shubin, 1998). The “digital arch” (distal mesopodial
elements and condensations of digits I–III; Shubin & Wake,
2003) forms early and, inBolitoglossa subpalmata, is continuous

with condensations of the ulnare/fibulare and forms in a “weak
pre- to post-axial sequence” (Shubin & Wake, 1991). Early
formation of the digital arch is less apparent in type-II-collagen-
stainedD.aeneus,which formmetacarpal II andadigit II phalanx
before the basale commune and with no apparent connection to
the ulnare/fibulare (Franssen et al., 2005). Additionally, preaxial
dominance and early distal condensations in the autopod are less
pronounced in both of these direct-developing species than they
are in metamorphosing salamanders.

More comparative data for direct-developing species are
needed to determine the extent to which limb patterning in
salamanders may be altered during life history evolution. In
aquatic larvae of metamorphosing species, limbs develop
after hatching and thus may experience specific selective
pressures related to growing a limb while moving about in
pond or stream environments. These pressures are less
relevant to the embryos of direct-developing species, which
are enclosed within a protective egg capsule.

Here we describe the molecular morphology of limb-
skeletal patterning in direct-developing Plethodon cinereus by
analyzing expression of mRNA for the genes sox9 and col2a1
visualized through whole-mount in situ hybridization. Sox9 is
an HMG-box-containing transcription factor that can reveal
the initial differentiation of pre-chondrocytes before they form
extracellular matrix (Chimal-Monroy et al., 2003; Welten,
Verbeek, Meijer, & Richardson, 2005; Kerney & Hanken,
2008; Kerney, Gross, & Hanken, 2010; Lorda-Diez, Montero,
Diaz-Mendoza, Garcia-Porrera, & Hurle, 2011; Hayashi et al.,
2015). In situ hybridizations detecting sox9 mRNA are a
consistently useful technique for analyzing early skeletal
patterning (de Bakker et al., 2013; Guimond et al., 2010;
Kerney & Hanken, 2008; Kerney et al., 2010; Kumar et al.,
2015; Montero et al., 2017). The gene for type-II collagen,
col2a1, is a direct target of Sox9 transcriptional activation in
the chondrocyte lineage of amniotes and amphibians (Bell
et al., 1997; Kerney, Hall, & Hanken, 2009; Lefebvre, Huang,
Harley, Goodfellow, & de Crombrugghe, 1997; Ng et al.,
1997). In the direct-developing frog Eleutherodactylus coqui,
expression of sox9 reveals novel early distal patterning of the
autopod, while expression of col2a1 (Kerney et al., 2010) is
identical to the subsequent distribution of type-II collagen
revealed by immunohistochemistry (Hanken et al., 2001).
These two transcripts are used as proxies for the specification
and differentiation of chondrocytes, respectively (Montero
et al., 2017; de Bakker et al., 2013). Finally, we evaluate early
limb patterning in P. cinereus revealed by gene expression in
the context of previous work on skeletal patterning during
salamander limb development and evolution.

2 | METHODS

We collected embryos of Plethodon cinereus in Halifax,
Nova Scotia, Canada (Nova Scotia Department of Natural
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Resources permits to RK), and Michaux State Forest in
Adams County, Pennsylvania (Pennsylvania Fish and Boat
permit 727-type 1 to RK). Jelly capsules were removed from
early embryos after a 10-min immersion in 0.5% cysteine (pH
8.5) followed by multiple washes in phosphate-buffered
saline (PBS; pH 7.6) and manual extraction with watchmaker
forceps in PBS (Kerney, 2011; Kerney, Blackburn, Müller, &
Hanken, 2012). Embryos were fixed for 2 hr in MEMFA,
rinsed twice (5 min each) in DEPC-treated PBS, and stored in
70%methanol at−20 °C (Kerney &Hanken, 2008). Embryos
were staged according to the preliminary table proposed by
Dent (1942) and expanded by Kerney (2011).

Cloning of sox9 and col2a1 followed the protocol of
Kerney and Hanken (2008). Embryonic RNA was
extracted from a single individual with the Trizol Reagent
(Life Sciences) following the manufacturer's protocol.
Superscript II (Invitrogen) reverse transcriptase was used
to make a cDNA template using random hexamers.
Orthologies of col2a1 (GenBank MG515834) and sox9
(GenBank MG515833) sequences from Plethodon ciner-
eus were verified via phylogenetic analyses of the protein-
coding sequences (Figure 1). We obtained amino acid
sequences of P. cinereus Col2a1, Sox9 and closely related
orthologs from GenBank for selected model organisms.
We created multiple alignments using MAFFT v.7.0
(Katoh & Standley, 2013), which were trimmed to the
length of our sequences from P. cinereus. We used the
best-fit model of sequence evolution (Col2a1: LG+G;
Sox9: JTT+I+G+F) selected via ProtTest v.2.4 server
(Darriba, Taboada, Doallo, & Posada, 2011; http://darwin.
uvigo.es/software/prottest2_server.html) in a maximum-
likelihood analysis conducted using PhyML v.3.0 with 100
non-parametric bootstrap replicates (Guindon et al., 2010;
Figure 1).

Whole-mount in situ hybridizations followed established
Xenopus protocols (Sive, Grainger, & Harland, 2000) with
slight modifications for the larger embryos of direct-
developing amphibians (Kerney & Hanken, 2008). Whole-
mount clearing and cartilage staining with Alcian blue
followed Hanken and Wassersug (1981).

3 | RESULTS

Sox9 expression precedes col2a1 expression during the
differentiation of limb cartilages (Figure 2). Sox9 is first
detected in the forelimb during Stage 17, at which point it is
restricted to the presumptive proximal humerus. By Stage
19, sox9 expression has expanded to include the ulnar
column of the forelimb, the radius and manual digits II and
III. There is also distinct expression in the “median column”
(Vorobyeva & Hinchliffe, 1996) of the presumptive
intermedium and element C of the mesopodium, which
lies between the expression domains of the radiale
anteriorly and the ulnare posteriorly. By Stage 20,
expression of sox9 in the forelimb expands to include digit
I and the median column is more clearly defined. In the
Stage-21 forelimb, digit IV is more elongate, though sox9
expression is no longer detectable in this digit or in the rest
of the forelimb.

Expression of sox9 in the hind limb begins by Stage 19 in
the presumptive femur, the fibular column, pedal digit II and a

FIGURE 1 Maximum-likelihood phylogeny for fibrillar collagen (a)
and soxE class (b) homologs from selected model organisms. GenBank
accessions for each amino acid sequence follow the taxon name

TABLE 1 Stage-specific sample sizes for sox9 and col2a1 in situ
hybridizations

Stage Sox9 in situ Col2a1 in situ

15 3 3

16 5 1

17 2 4

18 1 2

19 1 3

20 1 4

21 1 1
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proximal portion of the presumptive tibia. In the Stage-20
hind limb, sox9 expression includes digit III, but expression in
the median column is not distinct from the presumptive
fibulare. In the Stage-21 hind limb, sox9 expression only
reveals the distal phalanges of all five digits. Proximal
expression is no longer detectable.

Col2a1 expression in the limbs begins slightly later than
sox9 expression but otherwise follows similar spatial and
temporal patterns. At Stage 17, there is faint and indistinct
col2a1 expression in the forelimb but none in the hind limb.
During Stage 19, expression of col2a1 in the forelimb
includes the ulnar column, manual digit II and a proximal
portion of the radius. By Stage 20, forelimb expression
expands to include digits I and II. Expression in the median
column of themesopodials is discernable and continuous with
the presumptive ulnare (similar to Salamandrella key-
serlingii; Vorobyeva & Hinchliffe, 1996). In Stage 21,
col2a1 is strongly expressed in all four digits of the forelimb
and reveals some differentiation of the phalanges, meta-
carpals, and carpals.

Col2a1 expression begins in the hind limb by Stage 19,
when there is a faint and indistinct proximal region of
expression. In the Stage-20 hind limb, col2a1 is expressed in

the presumptive fibular column and a portion of the tibia, but
it is most strongly expressed in digit II with only faint
expression in digits I and III. By Stage 21, col2a1 is expressed
in all digits except digit V. Hind limb mesopodial elements
are well defined, but the tibial column and more proximal
limb cartilages are not discernable in col2a1 whole-mount in
situ hybridizations during Stage 21 (Table 1).

4 | DISCUSSION

4.1 | Patterns of differentiation

A cascade of molecular events and physical interac-
tions specify and commit mesenchymal cells to become
pre-cartilaginous condensations in the limb (Cooper, 2015).
Various condensation markers include Aniken patterns of
peripheral cells (Shubin & Alberch, 1986), type-II collagen
immunoreactivity (Franssen et al., 2005), peanut agglutinin
reactivity (Larsson & Wagner, 2002) and the expression of
col2a1 mRNA (Kerney & Hanken, 2008). Earlier markers
include expression of noggin:lacz or sox9:lacz transgenes
(Zhu et al., 2008), galectins CG-1A and CG-8 (Bhat et al.,
2011) and sox9mRNA (de Bakker et al., 2013). Expression of

FIGURE 2 Developmental expression of sox9 and col2a1 in embryonic fore- and hind limbs. All panels depict left limbs in dorsal view;
anterior is to the top. Arabic numerals denote distal carpals; digits are indicated by Roman numerals. BC, basale commune (fused 1st and 2nd
distal carpals/tarsals); C, centrale; F, fibulare; FE, femur; FI, fibula; HU, humerus; IN, intermedium; R, radiale; RA, radius; T, tibiale; TI,
tibia; U, ulnare; UL, ulna; Y, element Y. Scale bars equal 0.2 mm
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sox9 mRNA was found to be the earliest marker of
differentiating chondrocytes in a comparative study of
induced ectopic cartilage in the embryonic chicken wing
(Lorda-Diez et al., 2011). Given the apparent conservation of
the role of Sox9 in chondrocyte differentiation, whole-mount
in situ hybridization with sox9 has become a standard for
detecting early skeletal patterning (Montero et al., 2017).

Interestingly, the early patterning detectable through
sox9 mRNA distribution or reporters does not always
parallel the subsequent patterning of fully differentiated
condensations (de Bakker et al., 2013; Kerney & Hanken,
2008; Zhu et al., 2008). For instance, Zhu et al. (2008)
discovered novel patterns of mouse digit loss through a
conditional Shh deletion study that mirrored the specifica-
tion patterns revealed by sox9:lacz and noggin:lacz.
Contrary to these observations, our data for Plethodon
cinereus do not reveal differences between the early
patterning revealed by sox9 and the subsequent formation
of a committed condensation as revealed by col2a1. This
consistency reveals that the earlier patterning mechanisms,
which result in the specification of these chondrocytes
based on sox9, is reflected in the timing of their subsequent
differentiation, as revealed by col2a1. Thus, early pattern-
ing revealed by sox9 is not always different from that
revealed by later markers. Subsequent studies examining
the molecular patterning of tetrapod limbs would benefit
from including markers of multiple stages of chondrocyte
differentiation.

4.2 | Preaxial autopod patterning is
continuous with the postaxial Ulna/Fibula

Early patterning of the limb skeleton in Plethodon cinereus,
while consistent in many respects with that described for other
salamander species, is exceptional in several importantways that
may be a consequence of direct development. Similar to other
urodeles described to date, preaxial dominance of digit II is
apparent in both sox9 and col2a1 expression in the fore- andhind
limbs. However, this digital expression is continuouswith ulnar/
fibular expression and displays neither a distinct distal sox9
expression domain nor a separate condensation of col2a1-
expressing cells. In metamorphosing salamanders (reviewed in
Shubin andWake, 2003) and in Desmognathus aeneus, the one
direct developer that has been analyzed in detail (Franssen et al.,
2005), distal and independent condensations of the basale
commune and metacarpals/metacarpals I and II form separately
from the more proximal zeugopodial cartilages. The apparently
continuous patterning of the sox9- and col2a1-expressing digits
with more proximal condensations may be linked to the more
rapid specification of the limb in P. cinereus. However, such
continuous patterning is not observed in direct-developing E.
coqui, where there is early specification of an unconnected sox9
domain in digit IV (Kerney & Hanken 2008).

4.3 | No preaxial dominance in the zeugopod

Preaxial dominance of zeugopodial elements, in which the
radial/tibial column of differentiating cells is advanced in
comparison to the ulnar/fibular column, is a common
phenomenon in metamorphosing salamanders (Fröbisch,
2008). The additional presence of advanced radial/tibial
development in some fossil temnospondyls suggests that
preaxial dominance may have been widespread among early
tetrapods (Fröbisch et al., 2015). Preaxial dominance in the
zeugopod also occurs in direct-developing Desmognathus
aeneus (Franssen et al., 2005). However, differentiation of
chondrocytes is nearly synchronous between the two
zeugopodial columns within the P. cinereus limb bud.

4.4 | Early differentiation of axial digit II

The sequence of autopodial sox9 and col2a1 expression in P.
cinereus is similar to that of type-II collagen antibody
reactivity in direct-developing D. aeneus (Franssen et al.,
2005), as is the order of digit formation in both species: II-III-
I-IV-V (in the hind limb). However, in Bolitoglossa
subpalmata, another direct-developing plethodontid sala-
mander, digits I and II form simultaneously with the basale
commune prior to digit III (Shubin & Wake, 1991).
Simultaneous formation of digits I and II also is common
in metamorphosing salamanders (e.g., Desmognathus quad-
ramaculatus—Marks, 1995; Salamandrella keyserlingii—
Vorobyeva & Hinchliffe, 1996; Dicamptodon tenebrosus—
Wake & Shubin, 1998; Triturus marmoratus—Blanco &
Alberch, 1992; Ambystoma mexicanum—Shubin & Alberch,
1986). Delayed differentiation of digit I in P. cinereus and D.
aeneus remains unique to these species and may be
attributable to direct development within the subfamily
Plethodontinae, despite the presence of the more common
pattern in direct-developing B. subpalmata (subfamily
Hemidactyliinae). The one other known exception among
urodeles to the synchronous formation of digits I and II is in
the highly reduced hand of the neotenic Proteus anguinus in
which digit I forms first (Shubin & Alberch, 1986). The few
direct-developing salamander species studied to date offer an
inconsistent picture regarding the correlation between derived
features of limb formation and life history. However, it should
be emphasized that a sample size of three species is an
extreme under-representation of direct development, the most
common developmental mode of extant salamander species.

4.5 | No evidence of vestigial digits

Wagner, Khan, Blanco, and Misof (1999) propose that the
preaxial polarity characteristic of salamanders can be
attributed to their digits I and II being homologous with
digits III and IV of amniotes. According to this hypothesis, a
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common ancestor of salamanders (or possibly temnospond-
yls; Fröbisch et al., 2015) lost digits I, II, and V, leaving only
digits III and IV. Subsequently, new posterior digits III–IV
(III–V in the hind limb) were “reinvented,” making the
retained original digits III and IV assume the positional
identity of I and II in salamanders. Unique late-stage
expression of hoxa-11 in digit III of the eastern newt,
Notophthalmus viridescens, is cited in support of this model
and as evidence that the urodele digits III–IV (V) are
developmental novelties (Wagner et al., 1999). A similar
frame-shift hypothesis proposed to account for the identity of
bird digits (Wagner & Gauthier, 1999; Wang, Young, Xue, &
Wagner, 2011). This avian model was recently supported by
patterns of sox9 expression, which reveal vestigial digits in
the developing chicken wing (de Bakker et al., 2013).

Similar vestigial digits have been proposed for amphib-
ians. Steiner (1921) describes a vestigial prehallux along with
a vestigial sixth digit in the foot in the tiger salamander,
Ambystoma tigrinum (cited by Galis, van Alphen, & Metz,
2001), although neither structure is seen with sox9 staining in
the axolotl or newts (Guimond et al., 2010; Kumar et al.,
2015). More recently, Hayashi et al. (2015) provide evidence
that the prehallux in Xenopus tropicalismay constitute a sixth
digit, supporting the notion that amphibians are not con-
strained to a maximum of five digits (Galis et al., 2001).
Evolutionary retention of vestigial anterior digits in sala-
manders might be anticipated from Wagner et al.'s (1999)
frame-shift hypothesis, especially since such vestiges have
been reported in birds (e.g., de Bakker et al., 2013). However,
retention of sox9-expressing vestiges may be less likely in
salamanders than in birds given that the divergence times of
temnospondyls from early tetrapods are far longer than those
of Aves from terrestrial theropods. Our study revealed no
evidence of transient vestiges of digits that would be
consistent with these hypotheses of “extra” salamander digits.

4.6 | Limb development and regeneration in
plethodon cinereus

Data regarding limb development in direct-developing
species are relevant to recent proposals concerning the origin
of salamander limb regeneration. Galis,Wagner and Jockusch
(2003) hypothesize that salamander limb regenerationmay be
contingent upon post-hatching formation of the limb during
larval development and metamorphosis. They propose that
limbs of metamorphosing salamanders possess a highly
modular developmental autonomy, which allows limb
formation well after “pleiotropic constraints” of the highly
integrative phylotypic stage during embryogenesis. Such
autonomy of limb development would thus constitute a
prerequisite for the extensive regenerative abilities of adult
salamander limbs. Direct-developing Plethodon cinereus is
also capable of limb regeneration (Dinsmore & Hanken,

1984; Scadding, 1977; Sessions & Larson, 1987), though its
forelimbs form during the phylotypic stage and the hind limbs
form only slightly later (Kerney, 2011). It remains to be seen
whether or how limb patterning of direct-developing
salamanders is governed by the networked regulatory
interactions that simultaneously occur within the embryo as
opposed to the larvae of metamorphosing salamanders.
Future studies of early limb development of P. cinereus may
reveal the extent to which limb formation has changed during
the evolution of direct development and its relation to those
features that govern limb regeneration at later stages.
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